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The structure of the forces and moments which arise when a rigid body moves in an unbounded volume of an ideal incompressible 
fluid under the action of central Newtonian attractive forces is discussed, the equations of motion are written in explicit form, 
their first integrals are indicated and the properties of these integrals are investigated. The problem of possible simplifications 
in the formulation of the problem is investigated, based on an analogy with the classical "satellite approximation" and which 
hold when the translational velocity of the body can be regarded as being independent of its rotational motion. The question of 
the existence and stability of steady motions, in this case relative equilibria, is investigated in the satellite approximation. © 2001 
Elsevier Science Ltd. All rights reserved. 

The  mot ion of  a rigid body in a central  Newtonian  force field is the classical subject of  investigations 
in theoretical  mechanics  (see, for example, [1, 2]). Numerous  investigations in this area have enabled 
a fairly complete  representa t ion of  the propert ies  of  the mot ion  of  such a system to be established. 
Nevertheless,  the propert ies  of  the mot ion  of  the same system in a space filled with an ideal 
incompressible fluid at rest at infinity have considerable differences. The reason for this is the interaction 
of  the fluid and body during the motion,  which manifests itself in the fact that the vectors of  translational 
and angular velocity of  the body depend on one another.  

1. T H E  L A G R A N G I A N  O F  T H E  S T R U C T U R E  A N D  T H E  F I R S T  
I N T E G R A L S  O F  T H E  E Q U A T I O N S  O F  M O T I O N  

Consider  the mot ion  of  a rigid body 5 ~ in an ideal incompressible fluid, which fills the whole of  space 
and is at rest at infinity. We will assume that the system moves under  the action of  central  Newtonian 
attractive forces with centre at the point  N, fixed in absolute space. Suppose NX~X~Xv is the absolute 
system of  coordinates,  C is a point  fixed in the body and Cxlxzx3 is a moving reference frame connected 
with the body. Suppose also that 

= ( a l ,  % %), I~ = (131,132, 133), ~' = (~'~, ~'2, ~'s) 

are the unit vectors of  the inertial system of coordinates  NX~X~X.~ and r = (r 1, r 2, r3) is the vector  N--~. 
Suppose to = (601, co2, co3) is the absolute angular  velocity of  the body and v = (Vl, v2, v3) is the absolute 
velocity of  the point  C. Here  and henceforth,  unless otherwise stated, all the vectors and tensors are 
specified by their coordinates in the moving reference frame. The equations which express the theorems 
on the change in m o m e n t u m  and on the change in the angular m o m e n t u m  can be written in the form 
of  the Lagrange -Eu le r -Po inca r6  equat ions 

d 3L OL 3L 3L 

at = 5-d× 

d 3L 3L 3L 
- x ~ + . - -  

dt 3v 3v 3r 

(1.1) 

These equat ions must  be supplemented with the kinematic equat ions 
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i ' = v + r x o ~  (1.2) 

which express the variation in the vector r with respect to the moving reference frame. 
Lagrange's function is written, as usual, as the difference between the kinetic and potential energies 

L(to, v, r) = T(to, v) - U(r) (1.3) 

After Eqs (1.1) and (1.2) have been integrated, we can obtain the change in the orientation of the 
body by integrating Poisson's equations 

a = c i x ~ ,  I ]=l~xto,  * = 3 ,  xl ,  l (1.4) 

Equations (1.1) and (1.2) with Lagrange's function, which does not depend explicitly on the time, 
allow of a (Penleve-Jacobi) first energy integral 

<,>j : , ,  (1.5)  

Moreover, by virtue of Eqs (1.1) and (1.2) we have the relation 

a__(aL+,. X aL t" +,-x aL')× 
at t a~o 7v ) = t, ~£~ av) 

(1.6) 

which expresses the law of variation of the angular momentum vector of the system with respect to the 
moving reference frame. In other words, the total angular momentum remains unchanged in absolute 
space, so that its projection onto any direction, fixed in absolute space, also remains unchanged. Each 
of these projections is the first integral of the equations of motion. We will choose from them three 
independent ones 

8L 3L ) 
¢i = 3---~+rx~--v-v , i ,  ie{e~, 13, 3'} (1.7) 

which express the projection of the total angular momentum vector onto the axis of the absolute system 
of coordinates. For each motion, the axes of this reference frame can be chosen in such a way that at 
the initial instant the total angular momentum vector is directed, say, along the [3 axis. 
We obtain 

¢ ~  = 0, ¢~ = Pv, ¢~ = 0 (1.8) 

The integrals ¢c~, eft, ¢y and the six geometrical integrals of Poisson's equations, which express the 
orthonormality of the reference frame NX~Xf~X v and which have the form 

~ i i = ( i , i ) - I  = 0 ,  i ~  {~ , [3 ,3"} ,  

offij=(i,j)=O, i , j e  {ot, l~,3"}, i ~ j  (1.9) 

enable us to reduce the order of the system of equations of motion and to reduce the problem to the 
integration of Lagrange's equations with five degrees of freedom. To integrate it, in addition to the energy 
integral we also need to know four independent integrals which commute with one another. 

The equations of motion also allow of the integral 

, - - + r x - -  (1 .10)  = + r x ~v bto bv 

which expresses the square of the total angular momentum vector or, which is the same thing, the sum 
of the squares of the integrals ~ ,  ¢1~, and <}v" The value of this integral, the existence of which can be 
seen from system (1.6), unlike the values of the integrals (1.7), does not depend on the choice of the 
absolute system of coordinates. 
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2. T H E  K I N E T I C  E N E R G Y  

We will investigate the structure of Lagrange's function (1.3) in more detail. As is well known, the motion 
of a rigid body is described by the equations 

- . - x t o +  x v + M  (2.1) 
dt ~to ~to ~to 

d 3T c = 3T c x to+ F (2.2) 
dt ~v 3v 

where Tc is the kinetic energy of the body, and F and M are the force and the moment  of the forces 
acting on the body. In the case considered 

T c = 2 ((I~3to, to) + 2(B~jto, v) + M~3 (v,v)) 

where I# is the inertia tensor of the body with respect to the point C. If ~ = (~1, ~2, ~3) is the vector 
C-~, where G is the centre of mass of the body, E is the identity 3 x 3 matrix, and M ,  is the mass of the 

body, we have 

B~ = M~ 0 -@l  (2.3)  
~ 0 

The forces and moments acting on the body can be represented as 

F = F N + F  L, M = M N + M r  

where F N and M N a r e  the force and moment due to the presence of the attracting centre, and F L and 
ML are the force and moment due to the presence of the fluid. 

If °R(x, r) is the volume density of the gravitational forces, the Newtonian gravitational potential has 
the form 

U~(r) = ] p .3(x)oR(x,r)d'c(x)  
~3 

where 9~(x) is the density of the body. In this case 

3U~ c3U"3 M m = r x ,,, (2.4) 
FN = oqr ' ¢3r 

In the case considered 

°R(x, r) = --fNMoIXl -I, X = x + r 

The force and moment acting on the body from the fluid side have the form 

F L = -  I p ( x ) n ( x ) d f f ( x ) ,  M z = -  ~ p ( x ) x  x n ( x ) d f f ( x )  

(2.5) 

(2.6) 

wherep(x) is the fluid pressure at a point x on the body surface and n(x) is the vector of the unit outward 
normal at this point (see, for example, [3-5]). 

Suppose the genus of 8q5 is equal to zero and the fluid flow is potential. A unique function 
~) = 0(x, t) then exists which determines the fluid velocity field 

v (x )=0¢/0x  (2.7) 

and which satisfies Laplace's equation with boundary conditions 
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AOO = 0 

0qb/0n = (0qI /0x ,  n ( x ) )  = (v  + 60 x x ,  n ( x ) ) ,  x ~ 0 ~  

O¢ /Ox  ~ O, Ixl ~ 

Hence, the determination of the potential of the fluid flow reduces to solving an external Neyman 
problem. 

Note that if the genus of Oq~ is greater than zero, wc must seck a multivalue potential using, for 
example, the method of imaginary partitions. But, nevertheless, formulae (2.7) for determining the 
velocity field will again be applicable (see the details in [3, 4]). 

After Neyman's problem has been solved, the pressure can be found from the Cauchy-Lagrange 
integral 

(be  + I ( a¢  + ~(x) )  (2.8) 

The expressions for F L and M L can be represented in the form of sums 

FL = F o + F s ,  ML = M o + M s  

The quantities with the subscripts D correspond to the first two terms on the right-hand side of the 
Cauchy-Lagrange integral and have a hydrodynamic origin, whereas the quantities with the subscript 
S, corresponding to the last term, have a hydrostatic origin; these forces and moments will henceforth 
be called Archimedes forces and moments. 

By virtue of well-known discussions (see, for example, [5]), the hydrodynamic components of the forces 
and moments have the form 

dK dL 
F° . . . .  dt t o x K ,  M D . . . .  dt t o x L - v x K  

where 

arL 
K = B L t ° + C L v = - ~ - v  ' L=At~°~+Brv=aTLa~ 

while the function 

! 

rL = 2 ((A LoJ, to) + 2(BLto, v) + (CLv, v)) 

is the kinetic energy of the fluid. The matrices AL, BL and CL define the tensor of the added masses of 
the body. Then, in the moving reference frame we have 

1 ((Ato, to) + 2(Bto, v)+ (Cv,v)) T =  Tc + Tt. = ~  

where the matrices A, B and C are constants. The equation can then be represented in the form 

d aT aT aT d aT aT 
x t o + - - x v + M e ,  - x c o + F  e (2.9) 

dt 3¢o ~to ~v dt Ov by 

Fe =FN+Fs ,  Me = F N + F s  

3. THE P O T E N T I A L  E N E R G Y  

By virtue of the Cauchy-Lagrange integral, the hydrostatic component of the pressure has the 
form Ps = -gL~(x) ,  where OL is the fluid density. Hence, from formula (2.6) and Gauss' formula we 
have 
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Fs =-  I Ps ndc(x):pm I OR(x)ndo(x)=pLI O~(X)dx(X) 

In the case considered the only singularity in the integrand is outside the body. However 

~X ~ (X)  = ~ r  ~ ( r +  x) 

whence 

Fs : PL ~ ( r + x ) d x ( x )  : ~ r  (3.1) 

where 

UA =--PLf~ ~(x +r)dx(x)( = fuMNptI~ [Xl-~ dx(x)) 
The moment of the hydrostatic (Archimedes) forces can be written in the form 

OUA 
M a = r x  Dr (3.2) 

Finally, the total potential has the form 

g( r )  = UN(r)+Ua(r)  -- -fNMNI IX I -I dma(x) (3.3) 

where dma(x) = (p~(x) - pL)d'c(x) is the distribution of the added masses of the body in the fluid. 

Remark. If the body had performed motion in a region of finite dimensions v, the expression for the 
potential energy could have been represented as 

U(r)=-fuMul IXI -~ drn~(x)-fNMN J tXl- '  dmL(x)= 

=-fNMNJ IXI -~ dm~(x)+foMNJ IXl -~ dmt.(x)-foMNI IXI- '  dmL(x) (3.4) 
,~3 ~ v 

If the potential density does not have singularities in the region v, the last term is finite and is 
independent of r. It makes no contribution to the expressions for the forces and moments. However, 
when the fluid fills the whole of space, these discussions can be regarded as a rigorous justification of 
the structure of the potential. 

The equations of motion take the following explicit form 

bU 
d ( A t o +  B r v )  = ( A t o +  Brv )  × co+ (Bco+ Cv)  x v - Or 

d 0U 
- : - (BoJ + Cv)  = (Bto + Cv) x c o -  
dt  

and they must be supplemented with kinematic equations (1.2). 

× r  (3.5) 

4. A P P R O X I M A T I O N S  FOR THE P O T E N T I A L  

In Eqs (1.1) and (1.2) one can use both the exact expressions for the potential (3.3) and various 
approximations of them. These approximations may be related, for example, to the hypothesis that the 
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body is small c o m p a r e d  with the r emoteness  of  the body f rom the at tract ing centre.  In this case the 
9 r2>,1/~ quanti t ies  ~(x) = I x I/r, where  r = (ri" + r 2 + 3J -, are small c o m p a r e d  with unity: SUpx~ [ e(x) I ~ 1 

and we can use the asymptot ic  expansion 

, / 
( r + x , r + x ) ~  r 

to obta in  approx imate  values  of  the potential .  We have 

( r , x )  x 2 3 ( r x x )  2 
ul ( r , x )  = , u2( r ,x )  = 

r 2 r 2 2 r 4 

In tegra t ing  the first re lat ion over  points  of  the body, we have 

u l ( r , x ) d m a ( X ) = - - ~ ( r ,  ~ xdma(X)) 
r < 

The  integral  on the r ight-hand side is re la ted to the barycent re  of  the distr ibution of the added masses.  
More  accurately, suppose M a = J" dma(x ) is the total  added  mass of  the body (which can be both  positive 

and negative or  equal  to zero)  and Ca is the barycent re  of  the distr ibution of  added  masses,  which exist, 
if M a ¢ 0. We have 

Xdma(X)~]gacc~ for g a ~ 0  I ] ~ for M~ = 0 

The  vector /a ,  which is i ndependen t  of  the choice of  the origin of  coordinates  and which only exists 
when  M a = 0, will be called the dipole momen t .  Finally we have 

1 -+ 
- M ~ 7 ( r ,  CCa) for M a 

u I (r,  x)dmo (x) = ! 

= 0  
t r" 

s 0  

I f M ~  is the mass of  the body, ML is the mass  of  the fluid displaced by it, C~ is the centre  of  mass  of  
the body and CL is the centroid  of  this body, i.e. the cent re  of  the mass of  the fluid displaced by the 
body, we have Ma = M~ - ML and 

.__) --+ ~ > 

M a CC a = M~ CC~-  M CCL for M a ¢  O, ~ = M~ CLC ~ for M~ = 0 

In tegra t ion  of  the terms of  the second order  of  smallness gives 

, ,  

I~, = I0 - 3 Tr( l , ,  )N  

(I~ is the deviator  of  the inertia tensor  of  the added  masses  Ia). 
Finally, the expression for  the potent ia l  has the form 

U(r)  = U0(r) + Ul(r)  + U2(r) + o(1/r 3) (4.1) 

Uo(r)  =--fNMN M a U2(r ) = × ( D r , r )  
r ' 2 r 5 
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/INM Mo for Mo 
U 1 (r) = ~ r 3 

[ f N M N ~  for M a=O 

;a0 

(D = 3I; is a tensor with zero trace and × is a constant). Hence, we obtain two very different cases. 
The case Ma ~ O. Choosing the point Ca as the origin of the moving reference frame, the potential 

can be reduced to the form 

U ( r ) = U  0 ( r ) + U  2( r )+  -~- r 
x (Dr, r) 
2 r 5 

- -  Jr... 

In the first approximation the potential is equal to U0, and this potential generates an attractive or 
repulsive force directed towards the centre N or from the centre N depending on whether the added 
mass Ma is positive or negative. Note that the potential of the first approximation only affects the 
translational motions of the body and has no effect on its rotation. The component  U2 is decisive for 
determining the orientation of the body. 

The case Ma = 0. The potential takes the form 

o i l / _  (r,tL) + (Dr, r) U(r)=Uj(r)+U2(r)+ -~ - fNMN × 
2 k 5 

- -  + . . .  

In the first approximation, therefore, the situation is neutral. However, in the next approximation the 
component  U1 has a decisive effect both on the translational motion of the body and on its rotation. 
Such a situation does not occur in the orbital dynamics of rigid bodies under gravity forces, so that this 
case deserves a separate consideration. We merely note that it only occurs for a non-uniform body, since 
it follows from the fact that the added mass is equal to zero in the case of a uniform body that the densities 
of the body and the fluid are the same and, as a consequence, the potential U(r), is identically equal 
to zero. 

5. T H E  S A T E L L I T E  A P P R O X I M A T I O N  

In the orbital mechanics of rigid and deformable bodies the so-called "satellite approximation" is well 
known. It enables the problem to be simplified and also to distinguish between the motion of the centre 
of mass of the system and its motion around the centre of mass. The question arises of whether one 
can indicate those values of the parameters in the problem of the motion of a body in a fluid for which 
the analogue of the satellite approximation can be used. 

We will consider the problem of the smallness of the body as follows. We will assume that a family 
of bodies exists, homothetic between one another, with a common homothety centre at the point C 
and that this family is parametrized with a homothety ratio ~. Suppose 

f(x~le, xz/e, x3/E) = 0 

is the parametric equation of the surfaces of these bodies. If E ~ 0, the dimensions of the body also 
tend to zero. The body density is assumed to be independent of the dimensions of the body, i.e. of the 
parameter  e. Then the solution of Laplace's equation can be expressed as a function of E. Substituting 
its solution into the formulae for the components of the kinetic energy matrix, we obtain their 
dependence on this parameter.  We have 

Mk(e) = E3Mk(I), k ~ {~, L}, B~(E) = E4B~(1), /~(g) = EsI~(1) 

AL(E) = 8SAL(I), BL(8) = E4BL(1), CL(~;) = e3CL(I) 

Then 

A(E) = ~SA(I), B(e) =e4B(1), C(~) =E2C(I) (5.1) 
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D(c) = cSD(1) (5.2) 

U ( r , c ) = U o ( r , e ) + U t ( r , e ) + U 2 ( r , c ) +  . . . .  csU0(r, 1)+ e4U](r, 1) + esU2(r, 1)+... (5.3) 

Consider, for example, a body in the form of an ellipsoid. Suppose its centre and principal axes coincide 
with the centre and principal axes, respectively, of a moving reference frame, while the semi-axes a i 
depend on the parameter 

p r 

~i = Eai, ai = O(1) (5.4) 

The structure of the components of the tensor of the added masses is well known [4]. We have 

Ct. = diag(Ct. ] , Ct. 2 , Ct. 3), Ct.i = ~i 2-~5 i pt.v, i = 1,2,3 (5.5) 

~)i(al,a2,a3)=ala2a3 ~ d'L 
o (a 2 + Z),x 

(V = 4,/3ff, ala2a 3 is the volume of the body). The matrix BL is equal to zero. The matrix AL has the form 

1 (a 2 a2) 2 
- 3 ( 5 3 - ~ 2 )  

At. = diag(At.j,At.2,mt.3), At. j = 5 2(a 2 - a 2 ) +  (a22 +a~)(~52 -~3)  pt.v (1 2 3) 

Substituting expressions (5.4) and ~, = Z'~ 2 into (5.5) and assuming that the fluid density PL is constant, 
we have 

5i(al ,a2,a3) =Si(a( ,a~,a~) 
3 p p p t 

CLi(al,a2,a3)=F. CLi(a],a2,a3), At.i(al,a2,a3)=85Al.i(a~,a2,a~) 

Suppose e ~ 0. Then, substituting (5.1) and (5.3) into the equations of motion, separating their left- 
hand and right-hand sides in E 2 ¢ 0 and discarding the argument of unity in the matrices, we have 

d(E2At°°+EBTv)=(l~2At°+l~Brv)×c°+(EB°~+Cv)xv-/~-~kr] +¢2 cgU2c3r + . . . ) × r  (5.6) 

_( u0 +0u, ) 
(~B~+Cv)=(¢B~o+Cv)xo~ ~, 3r Or +""  ) (5.7) 

We will seek solutions in the form of formal series 

( o = o J o + ~ t o l + . . . ,  v=v0+l~vl+ . . . ,  r = r 0 + ~ : r l + . . .  

Since further discussions only touch on terms of the lowest order, the subscript zero will henceforth 
be omitted everywhere. 

We will assume that the tensor C is non-spherical. Then, in the first group of equations (5.6) the 
parameter e2 remains a factor for the higher derivative and a direct analogy with the satellite 
approximation does not exist in the general case. Possible methods of overcoming this difficulty will 
not be considered in this paper. 

We will now assume that the tensor C is spherical: C = cE. Then Cv x v = 0 and both sides of 
Eqs (5.6) can be separated for E ¢ 0. In the limit as ~ ~ 0 

d BT v = B T v  X t o +  B t o x  v - ~ U l  x r ( 5 . 8 )  
dt ~r 
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dv 1 3U 0 
- -  = v x 0 } -  - - -  ( 5 . 9 )  
dt c ~r 

We will write Eqs (5.9) with respect to the absolute system of coordinates. In them R is the vector 
N--~, and the equations have the form 

d 3L o _ 3L 0 (5.10) 
dt ~R 3R 

with Lagrangian 

Lo(R, R) = c R2 + fNMu(M ~ _ M L ) I ,  
2 r 

In explicit form they can be written as 

r = ( r , r )  ~ = ( R , R )  ~ 

d2R~/2 --~fNMN(M~3-ML)-~ (5.11) 

These equations can be integrated in the same way as the equations in Kepler's problem, but the 
qualitative properties of the motion under certain conditions turn out to be quite different. For example, 
ifML > M~ there are no closed orbits. IfML = M~, the point C in this approximation moves with constant 
velocity along a straight line, which does not necessarily pass through the origin of coordinates, but is 
not observed in Kepler's problem. Finally, i fM L < M.~, then, as in Kepler's problem, there are hyperbolic, 
parabolic and elliptic orbits. But the parameters of these orbits depend both on the masses M.~ and ML 
and on the coefficient c of the tensor of the added masses. 

After Eqs (5.11) have been integrated, i.e. the relations 

R = R ( t ) ,  v = R ( t ) = v ( t )  

have been obtained, the quantities r and v can be represented as functions of time and of the orientation 
of the body 

r = SrR(t), ii  31[ v = s r v ( t ) ,  S=  131 13 2 [3 a (5.12) 

Yt Y2 Y3 

Substituting these expressions into Eqs (5.8) we obtain a system of algebraic equations in co. When the 
conditions which ensure compatibility of the system and the uniqueness of its solution are satisfied, 
substitution of this equation into the system of Poisson's equations gives a closed system for determining 
the change in the orientation of the body. We will not dwell on the details here. 

For the reasons indicated above, the gravitational moment plays no decisive role in system (5.8), except 
when M~ = ML. But in this case, by virtue of Eqs (5.11), the point C moves along a straight line and 
the problem cannot be regarded as the problem of the motion of a satellite. If M~ ¢ ML, the point C 
moves in a Kepler orbit, but, in the approximation considered, the attraction forces play no role in the 
motion of the body around the point C. 

Finally, suppose C = cE, B = 0 and M~ ¢ ML. Then, after dividing Eq. (5.6) by E 2 ~ 0, we obtain 
the equation 

~ r  2 x d A t o  = A0}x 0}- x r = A ~ x  0}--;g-Dr x r (5.13) 

which together with Poisson's equations describes the change in the orientation of the body. In the 
general case these equations are again the Euler-Lagrange-Poincar6 equations 

d 3 ~  3 ~  3h~ / 
= xoJ+--~r  xr ,  ~£(co, r )=  2(A~°' 0})-U2(r) (5.14) 

dt 3(o 30} 

The motion of the point C is again given by Eq. (5.11). Substituting r = SrR(t) from (5.12) into (5.13) 
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and considering the latter together with Poisson's equations, we have a closed, in general, non- 
autonomous system of 12 equations in 12 unknowns for determining the orientation of the body and 
the change in angular velocity. 

By analogy with Kepler's problem we conclude that in the approximation considered the point C 
moves in a plane fixed in absolute space and perpendicular to the components of the angular momentum 
vector corresponding to Eqs (5.11). By virtue of the integrals (1.8) this plane coincides with the NX~X~ 
plane. In order to integrate Eqs (5.11) we will assume that the point C moves in the same plane. In 
this plane we introduce the polar coordinates 

Rv = r c o s ~ ,  R a = r s i n ~  

Lagrange's function (5.10) can then be written in the form 

L(i', ~, r)=2(i '2 +r2fF2)+ fNMN(M~--ML) 1 
r 

The coordinate ~t is cyclic, and the corresponding first integral has the form 

cr2v = Pv (5.15) 

whence 

fll = p~¢ /(cr 2 ) 

and Routh's function can be represented as 

R(k, r, pv )=c i 'Z /2 -Ua(r ,  pv), UA(r , pv)=p$/(2cr2)+U(r)  (5.16) 

where UA(r, PV) is the reduced potential. The critical points of this potential correspond to the radii of 
circular orbits. We have 

2 ~UA~r - cr 3p~+ fNMu(M~ --ML)--~ =0 

whence we derive that in these orbits 

2 
r = Pv (fNMN(M~ - ML) ~ 

cfNMN(M~ _ ML) = ~ c~t~/2 (5.17) 

or in the "Kepler's law" form 

r3~ z = fNMN(M~ - ML)/C 

Hence the relation between the radius of the orbit, the masses and the added masses follows. 
Since c ~> My, while Mc >- O, in general the constant on the right-hand side of the last equation is 

less than the constant on the right-hand side in the case when there is no fluid. In other words, for this 
orbital radius, the orbital angular velocity of the motion in a space filled with fluid is less than the orbital 
velocity in a vacuum. 

We can use the true anomaly ~ as the independent variable instead of the time. In the case of an 
elliptic orbit this replacement enables us to find the equation of the orbit 

r = p/(1 - e cos ~)  (5.18) 

where p is the parameter  of the ellipse and e is its eccentricity. Substituting (5.18) into (5.15) we obtain 
an equation which determines gt as a function of time. With the exception of the case of circular motion, 
the solution of this equation, called Kepler's equation, cannot be expressed in a final form. In order to 
avoid solving it in explicit form, when describing the change in the orientation of the body we also use 
the true anomaly as the independent variable. 
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6. THE DYNAMICS OF THE SYSTEM WITH RESPECT TO A 
UNIFORMLY ROTATING "ORBITAL" SYSTEM OF COORDINATES 

We will now consider an orbital system of coordinates NX'c,X'~X'~, rotating around the NX'~ axis, 
coinciding with the NXf~ axis. Suppose NX'v is the axis directed along the vector N---~, the axis NX~ is 
orthogonal to the orbital plane, the axis NX~ is in the orbital plane, and we supplement NX" v and NX'~ 
up to the right triple. Suppose 

. . . .  =(% 't2, ~'~) o¢=(o~,, o~2, %), I~'=(13~, [~2, I~), a" 

are unit vectors of this system of coordinates. Then 

a '=otcos~C-~,sin~,  [V=I3, ~ , ' = a s i n ~ + ~ / c o s ~  

In general this reference frame rotates non-uniformly. We will confine ourselves solely to the case of 
circular motion, in which case the orbital angular velocity ~9 = const. Suppose D is the angular velocity 
relative to the reference frame NX'aX'~X' v. This velocity and the absolute angular velocity to are related 
by the expression 

We will put 

to = D +  V13 (6.1) 

Y~(~, 13, ~ , ) = ~ e ( ~ + ~ 1 3 ,  ~ )  

Here and henceforth in this and the following sections the primes will be omitted everywhere. 
We have 

Hence, by virtue of (5.14) 

a ~  a~e~ . a~e a~, a~e a ~ r =  ~ = ~ g - -  - - = r  
a~ ato' a~ ato' a.y a r  

d a.% a~x(,O.+~/13)+_~ a ~  a.% D+a.% a.% 
dt oqD. - a t o  c3~/ x( ,"y)= oqD, x a~ x[3+ c3.,/ 

We will write Lagrange's function for the problem in question 

½ • ~£,= (A(~+~[3), ~ + ~ [ 3 ) - ~ - ( D ~ ,  ~/)= 

By virtue of Poisson's equation for the reference frame NX~X'~X' v 

the Euler-Lagrange-Poincar6 equations take the form 

A~:~= Al~ x ,.Q,+ V[A[3 x ,O,+ A,f~ x 0 -  A(~ x I-~)1 + Q2A~ x ~+ KD'y x 'y 

In addition to the geometrical integrals 

,~ii=(i, i ) - l = O ,  i ~ { a ,  [5, ~/} 

,:~ij=(i, j)=O, i, j ~ { ~  13, "y}, i~:j  

system (6.4) and (6.5) allows of the (Penlev6-Jacobi) energy integral 

( a~;~r 1"~)--,,~ =I(AI~,  I'~)+I[K(D~,, 'y)-~/2(A[~, [3)1 ~ = ( a~ ' 

×~/ (6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

(6.7) 
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Ua([3 , V ) = - ~ r ( 0 ,  [3, ~ , ) = - , 2 ( A B ,  B ) / 2 + K ( D %  ,/)12 (6.8) 

is called the augmented potential of the system considered. 
For complete integrability of the equations of the satellite approximation in the case of a circular 

orbit we lack two additional commutative independent first integrals. 

7. R E L A T I V E  E Q U I L I B R I A  W I T H I N  T H E  F R A M E W O R K  
OF T H E  S A T E L L I T E  A P P R O X I M A T I O N  

Using Routh's method we can obtain the steady motions and investigate the sufficient conditions for 
their stability in the satellite approximation. Consider the Routh function 

and put 

.~ = r3([12 / x = ~12 ] K 

(7.1) 

Since the vector cc does not occur explicitly in Lagrange's function, the integrals with c~ are not included 
in this linear combination. The critical points of function (7.1) correspond to steady motions of the system 
considered and can be found from the equations 

aw-~2 ~r n+ a~r a~, = ~ 2 r  O=AO=0 (7.2) 
O ~  O~Q 2 81-1 On  

OW = 0 2 ~r II  - O 5~, + k[3 + v , / =  0 (7 .3)  
al~ a ~ a n  al~ 

a w  = a25er n _  a~er 
+ vl3 +/aV = 0 (7.4) 

To determine the relative equilibria we must consider these equations together with the integrals from 
(6.6), which are independent of co, as a system in ~,  [3, ¥ and Lagrange multipliers )~,/a and v. 

Equation (7.2) always allows of the solution f2 = 0, and if the matrix 02~r/0S'22 = A is non-degenerate, 
which happens in mechanics, this solution is unique. From the point of view of mechanics the equality 

= 0 denotes that these motions are steady, i.e. the rigid body is immobile in the orbital system of 
coordinates NX~X'~X" v. In other words, in these motions the system is in equilibrium with respect to a 
reference frame uniformly rotating around the NXf~ axis, and these motions in this case are relative 
equilibria. 

From Eqs (7.3) and (7.4) we obtain 

(~,E - ~ 2 A ) [ 3  + v~, = 0 (7.5) 

vB + (KD + ~tE)~, = 0 (7.6) 

Equations (7.5) and (7.6) have a more general form than the classical equations describing the relative 
equilibria of a satellite moving in a vacuum (see, for example, [1, 2, 6]). 

Multiplying Eq. (7.5) scalarly by ¥ and Eq. (7.6) by [3 and using geometrical integrals, we obtain 

v =  ~t2(A[3, y ) = - K ( D ~ ,  ~,) (7.7) 

Multiplying Eq. (7.5) scalarly by [3 and Eq. (7.6) by y, we obtain 

~,= ~2(A13, [3), ~t=-K(D~l, ~!) (7.8) 
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Nevertheless, by eliminating the Lagrange multipliers in this way we cannot obtain a closed subsystem 
of equations in 13 or y. However, we can use the method described previously in [6]. Rewriting Eq. (7.5), 
we obtain 

(~2A-~lT_.,)6=vy 

Scalar multiplication of the left-hand and right-hand sides, the uniqueness of 13 and y and the expression 
for ~. from (7.8) imply the relations 

v = EI( (~2A - ~LE)6, ( ~ 2 A  - ) ,E)6)  )6 = ,%(~? - 2 X ~ 2 ( A 6 ,  6 )  + ~ 4 ( A 6 ,  A 6 ) )  )6 = 

= E,~2((A6, A 6 ) - ( A  6, 15)2) ~ = 

= e t ~ 2 ( A 6 x 6 ,  A 6 x 6 )  ~ = e l ~ 2 1 A 6 x 6 1 ,  el =+-1 (7.9) 

Then, by virtue of the same equation (7.5) 

V = 8t (A - (A6, 6)E)6 1 A6 x 6 1 -l= -81 6 x (6 x A6) I A6 x [31 -l (7.10) 

if the vector A13 is not collinear with the vector 13 or if v ¢ 0. 
Using Eq. (7.6) we find in the same way that 

v = e 2 K I D ~  x 71, e2 = :1:1 (7.11) 

6 = e2 sign K(( I~ ,  v ) E -  D)7 1D'Y x 7 I- l=-e2 sign K~/x ( I ~  x ~ )11~  x ~ I -I (7.12) 

Substituting the expression for 13 from the first equation of (7.12) into (7.10), we obtain the equation 

( ~ ( ~ , ) - ~  (~)),~ = o 

Hence, the vector y must belong to the kernel of the matrix (N(y) - ~(y)) and the existence of a solution 
implies the equality det(~(y) - q~(y)) = 0, which again indicates that the solutions are situated on a 
certain surface in y space. Moreover, these solutions are situated at the intersection of this surface with 
the sphere 72 _ 1 = 0. These conditions can also be obtained in the space of the variables 13. 

8. I N V E S T I G A T I O N  OF T H E  R E L A T I V E  E Q U I L I B R I A  U S I N G  THE 
E Q U A T I O N S  OF R E L A T I V E  M O T I O N  

The relative equilibria can, of course, also be obtained directly from the equations of relative motion. 
Assuming ~2 = 0 in Eqs (6.5), we obtain the system of algebraic equations 

~2A6  × 6 = KIr,I x v (8.1) 

which express the equality of the moments of the active and centrifugal forces. The projection of these 
moments onto the axes of an orbital system of coordinates give the system of equations 

-V2(A6, 5 ' )=K(Dy,  6), 0 = - K ( D %  a), ~2(A 6, a ) = 0  (8.2) 

which must also be considered together with integrals (6.6). 
Note that the first of equations (8.2) is equivalent to Eq. (7.7). 
Using the geometrical relations cz = 13 x y, we eliminate c~ from Eqs (8.2). Now, instead of all the 

integrals (6.6) it is sufficient to consider only those which do not depend on ct. Separating the 
homogeneous and non-homogeneous subsystems from the system obtained, we finally have 

(6 ,  ~') = 0, (D.y, 6 x ~,) = 0, ( A 6 ,  15 x V) = 0, x (A~ ,  ~/) + (D'y, 6)  = 0 (8.3) 

(6 ,  6 )  = 1, (7,'Y) = 1 (8.4) 
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Hence, if we succeed in obtaining a certain-non-zero solution of the homogeneous subsystem (8.3), 
then, using the non-homogeneous subsystem (8.4), we can normalize this solution. 

By virtue of Eqs (7.5) (correspondingly (7.6)) the vector A13 (correspondingly the vector Dy)must  
lie in the plane generated by the vectors 13 and 7, for which it is necessary and sufficient that the vector 
A[3 (correspondingly DT) is orthogonal to the vector [3 x 7. The additional constraint related to the 
uniqueness of the value of the Lagrange multiplier v consists of satisfying the fourth of conditions (8.3). 

By virtue of this condition the quantities (I)7, 13) and (AI3, 7) either simultaneously vanish or are 
simultaneously non-zero (it is assumed that • ~ 0). 

The solutions can therefore be of two types (we define more accurately that we mean here by the 
principal axes of inertia the eigenvectors of the tensor A). 

Solutions of the first type: the vector 13 is a non-eigenvector of the tensor A and y is a non-eigen- 
vector of the tensor D (and (A13, y) ~ 0, (Dy, [3) ~ 0). For each of these solutions the principal axes of 
inertia 
lie in a common position with respect to the vector [3 and to the vector N-~ (if necessary, oriented in 
the principal planes but not located along the principal axes) and the value of the derivative r3g 2 is 
fixed (which establishes the relation between the radius of the orbit and the angular velocity). 

Solutions of the second type: the vector 13 is an eigenvector of the tensor A and y is an eigenvector 
of the tensor D, while the constant ~ is a certain number (and (A[3, y) = (Dy, 15) = 0). For these solutions 
one of the principal axes of inertia is oriented along the _normal to the orbital plane one of the principal 
directions of the tensor D is oriented along the vector NC, and the values of the radius of the orbit and 
the angular velocity are arbitrary. 

We will consider the first, third and fourth relations from (8.3) as a subsystem in y. Bearing in mind 
the symmetry of the tensors A and D and the properties of a mixed product, we will represent the 
conditions for the vector y * 0, which satisfies this system, to exist in the form 

(13 x (A[5 x 15), D[3 + xA[3) = 0 (8.5) 

In this case the solution itself can be written as (7.10). The condition that y should satisfy the remaining 
of equations (8.3) has the form 

(13 x (AI3  x p) ) ,  D (A[3  x [3)) = 0 (8.6) 

Finally, in order for system (8.3) to have non-zero solutions, it is necessary and sufficient that conditions 
(8.5) and (8.6) should be satisfied. 

Condition (8.5) defines a fourth-order cone in [3 space, whereas condition (8.6) defines a fifth-order 
cone, and both cones contain eigenvectors of the tensor A. One solution of the first kind ([3, ,/, ~) (and 
the orthonormal basis {c~, 13, 5'} with vector c~, having the same direction as A13 × [3) corresponds to each 
non-zero vector 13 (the length of which can be assumed to be equal to unity), which belongs to this cone 
(8.6) and is not collinear with any one of the principal directions of inertia. On the other hand, the 
vectors [3, collinear with at least one of the principal directions, may or may not be necessarily solutions 
of the second kind. The intersection of these cones with the sphere ([3, [3) = 1 is formed of points which 
define the possible positions of the axes in 13 space. 

It we consider the first, second and fourth relations of (8.3) as a subsystem in [3, similar discussions 
give the conditions for [3 * 0 to exist, which can be represented in the form 

( ' , / x ( D v x ~ ) ,  A(D3'x3'))=0,  ( D y x " / ) 2 + x ( A ' y x ' Y ,  D V x " / ) = 0  (8.7) 

In this case the solution itself has the form (7.12). 
An investigation of the solutions of system of equations (8.5) and (8.6) or (8.7) is fairly lengthy and 

requires the use of methods of algebraic geometry. 

9. THE S I M P L E S T  R E L A T I V E  E Q U I L I B R I A  AND THE S U F F I C I E N T  
C O N D I T I O N S  FOR T H E I R  S T A B I L I T Y  

Suppose the tensors A and D are coaxial. Then the simplest relative equilibria exist, on which the 
eigenvectors of the matrices A and D coincide with the axes of an orbital system of coordinates. Suppose 
one of the principal axes of the matrices A and D is directed along [3, while the other is directed along 
y. Then, for example 
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ot = ( + l ,  O, O), ~ = (0, +1,  0),  'y = (O, O, "t-1) (9 .1)  

v = 0, ~, = ~/2a 2, P- = - K d  3 (9.2) 

In order to obtain the sufficient conditions for the relative equilibria to be stable, it is sufficient to 
investigate [6, 7] the signature of the constraint of the second variation of the function Won the linear 
manifold 

5~;={(51~, ~): (I~, 813)=o, (v,~)=o, (13, ~t)+(~/, 51~)=o} 

The second variation on the relative equilibria can be represented in the form 

282w = ( ~ & . q ,  

= (ASIa ,  8~)+((XE-~2A)813, 513)+((Im+KV)~/, ~/)+v(813, ~ )  

On the relative equilibria considered the linear manifold is defined by the equalities 

8132 = 0, 82,n = 0, 1528~, z + 73813a = 0 ¢:~ 572 = +513a = 8 (9.3) 

The constraint of the second variation on the linear manifold therefore gives 

282W I<e.3) = ( A S ~ ,  8X~) + ~2 (a 2 _ al )8132 + xi/2 (a 2 - a3)51~2 + 

+K(a, - a3)~ + r(d2 - a 3 ) ~  = 

= (A&O, ,  51"),)+ ~ /2 (a  2 -a l )8~  2 + K(d, - d3)872  + 

+[~/2 (a 2 _ a3) + K(d2 _ d3)]52 (9.4) 

The first term is a quadratic form, always positive-definite by virtue of the fact that the kinetic energy 
of the system is positive-definite. The second term is positive-definite if 

a 2 - a  I > 0  

i.e. if the generalized moment of inertia about the axis normal to the orbital plane is greater than the 
generalized moment of inertia about the axis tangential to the orbit. The third term is positive if 

d l - d 3 > 0  

i.e. if the eigenvalue of the matrix D corresponding to the eigenvector directed along the tangent to 
the orbit is greater than the eigenvalue of the matrix D corresponding to the eigenvector directed along 
the local vertical. The latter condition of positive-definiteness has the form 

wa (a 2 _ a3) + K(d2 _ d3) > 0 

Non-satisfaction of any of these conditions implies bifurcation of the solution considered. If the index 
of quadratic form (9.4) is odd, in other words, the degree of instability is odd, we have instability of 
the motion in question. If  the index of this formula is even and is non-zero, it is possible for gyroscopic 
stabilization to exist, i.e. stability in the first approximation. This possibility will be realised if all the 
roots of the characteristic equation are pure imaginary. 
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